Fraction Top Tips

Ordering fractions

Example 1

2, 3, 1
$15 \quad 5 \quad 3$

1) Find a common denominator - what is the lowest number they all divide exactly into? 15,5 and 3 all divide exactly into 15
2) Multiply each fraction so that 15 is the denominator (bottom number)

Remember: Whatever you do to the top, you have to do to the bottom
$2 / 15$ will stay the same

You now have 2/15, 9/15, 5/15
3) Ordering in ascending order means going up, so smallest to biggest. Look at the numerators (top numbers) and put them in size order smallest first.
$\underline{2}, \underline{5}, \underline{9}$ or with the original fractions $\underline{2}, \underline{1}, \underline{3}$
$15 \quad 15 \quad 15$
1535
4) Putting in descending order means going down, so biggest to smallest. Look at the numerators and put them in size order with the largest number first.

9, 5, 2_ or with the original fractions
3, 1, 2
$15 \quad 15 \quad 15$
$\begin{array}{lll}5 & 3 & 15\end{array}$

Example 2

5, 2, 1
$6 \quad 93$

1) Find a common denominator - what is the lowest number they all divide exactly into?

6,9 and 3 all divide exactly into 18
2) Multiply each fraction so that 18 is the denominator (bottom number)

Remember: Whatever you do to the top, you have to do to the bottom!

You now have 15/18, 4/18, 6/18
3) Ordering in ascending order means going up, so put the numerators in size order smallest first.
$\underline{4}, \underline{6}, \underline{15}$ or with the original fractions $\underline{2}, \underline{1}, \underline{5}$
$18 \quad 18 \quad 18$
936
4) Putting in descending order means going down, so look at the numerators and put them in size order with the largest number first.
$15,6,4$ or with the original fractions 5, 1, 2
$18 \quad 18 \quad 18$
$6 \quad 3 \quad 9$

Example 3

Sometimes it is easier and quicker to convert each fraction into a decimal and then order them based on their decimal equivalence.

For example if you had to order $\frac{3}{4}, 2 / 10$ and $\frac{1}{2}$ as decimals this would be $0.75,0.2$ and 0.5
Ascending order: $0.2,0.5,0.75$ or $2 / 10, \frac{1}{2}, \frac{3}{4}$
Descending order: $0.75,0.5,0.2$ or $\frac{3}{4}, \frac{1}{2}, 2 / 10$

Fraction Top Tips

Converting improper fractions to mixed numbers

An improper fraction is a top heavy fraction where the numerator is bigger than the denominator

Example 1

14 is an improper fraction which means $14 \div 3$

3

1) To convert to a mixed number solve the number sentence $14 \div 3=4 \mathrm{r} 2$
2) Put the remainder over the denominator (what you are dividing by) to get $42 / 3$
3) $42 / 3$ is a mixed number as it contains a whole number and a fraction

Example 2

Example: Convert $\frac{11}{4}$ to a mixed fraction.
Divide:

$$
11 \div 4=2 \text { with a remainder of } 3
$$

Write down the 2 and then write down the remainder (3) above the denominator (4).
Answer:

$$
2 \frac{3}{4}
$$

That example can be written like this:

Example 3

$$
\begin{gathered}
\frac{11}{4}=11 \div 4=2 R \\
=2 \frac{3}{4}
\end{gathered}
$$

Example: Convert $\frac{10}{3}$ to a mixed fraction.

$$
\begin{gathered}
\frac{10}{3}=10 \div 3=3 R \\
=3 \frac{1}{3}
\end{gathered}
$$

Answer:
$3 \frac{1}{3}$

Converting mixed numbers to improper fractions

A mixed number is made up of a whole number and a fraction

Example 1

$42 / 3$ is a mixed number as 4 is the whole number and $2 / 3$ is the fraction

1) To convert to an improper fraction multiply the whole number by the denominator so $4 \times 3=12$
2) Add on the numerator so $12+2=14$
3) Put the answer over the denominator $=14 / 3$

Example 2

Example: Convert $3 \frac{2}{5}$ to an improper fraction.
Multiply the whole number part by the denominator:

$$
3 \times 5=15
$$

Add that to the numerator:

$$
15+2=17
$$

Then write that result above the denominator:

$$
\frac{17}{5}
$$

We can do the numerator in one go:

Example 3

Example: Convert $2 \frac{1}{9}$ to an improper fraction.

Calculating with Fractions - Top Tips

Adding fractions with the same denominator

$\underline{3}+\underline{2}$
88

1) If the denominators are the same, then simply add the numerators together $(3+2=5)$
2) The denominator stays the same (8)
$\underline{3}+\underline{2}=\underline{5}$
$8 \quad 8 \quad 8$

Adding fractions with different denominators

Example 1

$\underline{1}+\underline{5}$
412

1) Put over a common denominator, 4 and 12 both divide exactly into 12
2) Multiply $\frac{1}{4}$ so that 12 is the denominator (bottom number) whereas $5 / 12$ will stay the same

Remember: Whatever you do to the top, you have to do to the bottom!

3) Add the numerators together, but the denominator stays the same
$\underline{3}+\underline{5}=\underline{8}$
$12 \quad 12 \quad 12$
4) Simplify where possible - this answer can be simplified by dividing both numbers by $4=$ 2

Example 2

$\underline{3}+\underline{2}$
85

1) Put over a common denominator, 8 and 5 both divide exactly into 40 (multiply 8 and 5 together)
2) Multiply each fraction so the denominator (bottom number) is 40

Remember: Whatever you do to the top, you have to do to the bottom!

3) Add the numerators together, but the denominator stays the same
$\underline{15}+\underline{16}=\underline{31}$
$40 \quad 40 \quad 40$
4) Simplify where possible - this answer can't be simplified!

Adding mixed numbers and fractions

$13 / 4+3 / 5$

1) Convert the mixed number to an improper fraction first-multiply the whole number by the denominator, add the numerator and put back over the denominator
$1 \frac{3}{4}=(1 \times 4)+3=7 / 4$ so the calculation is now $7 / 4+3 / 5$
2) Put over a common denominator, 4 and 5 both divide exactly into 20
3) Multiply each fraction so the denominator (bottom number) is 20

4) Add the numerators together, but the denominator stays the same
$\underline{35}+\underline{12}=\underline{47}$
$20 \quad 20 \quad 20$
5) Convert back to an improper fraction $-47 \div 20=2 r 7=27 / 20$

Calculating with Fractions - Top Tips

Subtracting fractions with the same denominator

4-2
$9 \quad 9$

1) If the denominators are the same, then simply subtract the numerators $(4-2=2)$
2) The denominator stays the same (9)

4-2 = 2
$9 \quad 9 \quad 9$

Subtracting fractions with different denominators

Example 1

3-1
42

1) Put over a common denominator, 4 and 2 both divide exactly into 4
2) Multiply $\frac{1}{2}$ so that 4 is the denominator (bottom number) whereas $3 / 4$ will stay the same

Remember: Whatever you do to the top, you have to do to the bottom!

3) Subtract the numerators, but the denominator stays the same
$3-2=1$
444
4) Simplify where possible - this answer can't be simplified!

Example 2

2-3
37

1) Put over a common denominator, 3 and 7 both divide exactly into 21 (multiply 3 and 7 together)
2) Multiply each fraction so the denominator (bottom number) is 21

Remember: Whatever you do to the top, you have to do to the bottom!

3) Subtract the numerators, but the denominator stays the same
$\underline{14-9}=\underline{5}$
$21 \quad 21 \quad 21$
4) Simplify where possible

Subtracting mixed numbers and fractions

$13 / 5-4 / 9$

1) Convert the mixed number to an improper fraction first-multiply the whole number by the denominator, add the numerator and put back over the denominator
$13 / 5=(1 \times 5)+3=8 / 5$ so the calculation is now $8 / 5-4 / 9$
2) Put over a common denominator, 5 and 9 both divide exactly into 45
3) Multiply each fraction so the denominator (bottom number) is 20

4) Subtract the numerators, but remember the denominator stays the same

72 $-20=52$
$45 \quad 45 \quad 45$
4) Convert back to an improper fraction-52 $\div 45=1 r 7=1 \quad 7 / 45$

Calculating with Fractions - Top Tips

Multiplying fractions

Example 1

3×2
83

1) Multiply across - multiply the numerators together so $3 \times 2=6$
2) Multiply the denominators together so $8 \times 3=24$
3) Put together to get your answer
$\underline{3} \times 2=\underline{6}$
8×324
4) Simplify where possible - both numbers are divisible by 6 , so you can simplify to $\frac{1}{4}$

Example 2

Example:

$$
\frac{1}{2} \times \frac{2}{5}
$$

Step 1. Multiply the top numbers:

$$
\frac{1}{2} \times \frac{2}{5}=\frac{1 \times 2}{}=\frac{2}{}
$$

Step 2. Multiply the bottom numbers:

$$
\frac{1}{2} \times \frac{2}{5}=\frac{1 \times 2}{2 \times 5}=\frac{2}{10}
$$

Step 3. Simplify the fraction :

$$
\frac{2}{10}=\frac{1}{5}
$$

With Pizza

Here you can see it with pizza ...

Multiplying fractions by a whole number

Example 1

4×2
9

1) The whole number of 2 can be written as a fraction as $2 / 1$
2) 4×2
$9 \quad 1$
3) Now multiply the numerators so $4 \times 2=8$
4) Multiply the denominators so $9 \times 1=9$
5) Put together to get your answer
$4 \times 2=8$
$9 \quad 1 \quad 9$
6) Simplify where possible

Example 2

$$
\frac{2}{3} \times 5
$$

Make 5 into $\frac{5}{1}$:

$$
\frac{2}{3} \times \frac{5}{1}
$$

Now just go ahead as normal.
Multiply tops and bottoms:

$$
\frac{2}{3} \times \frac{5}{1}=\frac{2 \times 5}{3 \times 1}=\frac{10}{3}
$$

The fraction is already as simple as it can be.

$$
\text { Answer }=\frac{10}{3}
$$

Or you can just think of the whole number as being a "top" number:
Example:

$$
3 \times \frac{2}{9}
$$

Multiply tops and bottoms:

$$
\frac{3}{9} \times \frac{2}{9}=\frac{3 \times 2}{9}=\frac{6}{9}
$$

Simplify:

$$
\frac{6}{9}=\frac{2}{3}
$$

Multiplying mixed numbers by a whole number

$12 / 5 \times 3$

1) First of all convert the mixed number into an improper fraction - multiply the whole number by the denominator and add on the numerator
$12 / 5=(1 \times 5)+2=7$ so it becomes $7 / 5$
2) Now turn the 3 into a fraction so it becomes $7 / 5 \times 3 / 1$
3) Multiply the numerators across so $7 \times 3=21$
4) Multiply the denominators across so $5 \times 1=5$
5) Put together to get your answer
$\underline{7} \times \underline{3}=\underline{21}$
5×15
6) Simplify where possible and then it can be converted back into a mixed number
$21 / 5$ means $21 \div 5=4 r 1$ and then put the remainder over the denominator so it becomes $41 / 5$
Example 2 What is $1 \frac{3}{8} \times 3$?
Think of Pizzas.

$$
1 \frac{3}{8} \text { is } 1 \text { pizza and } 3 \text { eighths of another pizza. }
$$

First, convert the mixed fraction $\left(1 \frac{3}{8}\right)$ to an an improper fraction $\left(\frac{11}{8}\right)$:
 Cut the whole pizza into eighths and how many eighths
do you have in total? 1 lot of 8 , plus the 3 eighths $=8+3=11$ eighths.

Now multiply that by 3 :

$$
1 \frac{3}{8} \times 3=\frac{11}{8} \times \frac{3}{1}=\frac{33}{8}
$$

And, lastly, convert to a mixed fraction (only because the original fraction was in that form):

33 eighths is 4 whole pizzas ($4 \times 8=32$) and 1 eighth left over.

And this is what it looks like in one line:

$$
1 \frac{3}{8} \times 3=\frac{11}{8} \times \frac{3}{1}=\frac{33}{8}=4 \frac{1}{8}
$$

Calculating with Fractions - Top Tips

Dividing a fraction by a whole number

Example 1

$2 \div 2$
3

1) The numerator stays the same as 2
2) Multiply the denominator by the whole number, so $3 \times 2=6$

3) $2 \div 2=2$

4) Simplify where possible $-2 / 6$ can be simplified to $1 / 3$

Example 2

$$
\frac{1}{2} \div 3
$$

Step 1. Multiply the bottom number of the fraction by the whole number:

$$
\frac{1}{2 \times 3}
$$

Which equals:

$$
\frac{1}{6}
$$

Step 2. Fraction is already as simple as possible, so no need for step 2.
Answer:

$$
\frac{1}{2} \div 3=\frac{1}{6}
$$

Does it make sense?

$$
\text { Does } \frac{1}{2} \div 3 \text { really equal } \frac{1}{6} \text { ? }
$$

Well look at the pizzas below ...
When half a pizza is divided into 3 equal parts, each person gets one sixth of a whole pizza.

A Half: Divided by 3:

Answer:
$\frac{1}{6}$

Example 3

$2 \div 4$

5

1) The numerator stays the same as 2
2) The denominator multiplies with the whole number so $5 \times 4=20$
3) Put it together to get your answer

4) Simplify where possible $-2 / 20$ can be simplified to $1 / 10$

The children no longer need to know how to divide a fraction by a fraction as this used to be a Level 6 objective

